

## **Past Papers Standard Grade** Chemistry **Marking Scheme**

| 2002              | KU  |                 | PS  |              |  |
|-------------------|-----|-----------------|-----|--------------|--|
| Credit            | /30 | %               | /30 | %            |  |
| 1                 | 20+ | 67%             | 19+ | 63%          |  |
| 2                 | 14+ | 47%             | 13+ | 43%          |  |
| See General Paper | <14 | <b>&lt;</b> 47% | <13 | <b>‹</b> 43% |  |

|          | 2002 St                       | andard (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Grade                                                                                         | Chemi                     | stry                                     | Cred                                                             | it Mar                                                                        | king                                              | g Sche                                                         | eme                                                                                                  |
|----------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Question | Answer                        | Chemistry Covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                               |                           |                                          |                                                                  |                                                                               |                                                   |                                                                |                                                                                                      |
| 1a       | A+C<br>Both for 1 mark        | Fertilisers are soluble salts containing potassium, phosphorus and/or nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                           |                                          |                                                                  |                                                                               |                                                   |                                                                |                                                                                                      |
| 1b       | B+F<br>Both for 1 mark        | Bases neutralise acids.<br>Bases include metal hydroxides (alkalis), metals oxides and metal carbonates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                           |                                          |                                                                  |                                                                               |                                                   |                                                                |                                                                                                      |
|          |                               | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A B                                                                                           |                           | <u> </u>                                 | С                                                                |                                                                               |                                                   | E                                                              | F                                                                                                    |
| 2a       | A                             | Bonding<br>type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | type Lonic Molecul                                                                            |                           | ular                                     | Metallic                                                         | Covale<br>Netwo                                                               | rk                                                | Metallic                                                       | Covalent<br>Molecular                                                                                |
| 2b       | <b>B+F</b><br>Both for 1 mark | Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onic as it does not<br>induct in the solid<br>state but does<br>nduct in the liquic<br>state, | no conduct<br>solid or li | tion as<br>quid.<br>pint means           | Metallic as<br>conducts in<br>both solid and<br>liquid states.   | Covalent<br>no conducti<br>solid or lic<br>High melting po<br>covalent net    | on as<br>juid.<br>int means                       | Metallic as<br>conducts in<br>both solid and<br>liquid states. | Covalent as no<br>conduction as solid or<br>liquid.<br>Low boiling point means<br>covalent molecular |
|          |                               | Write down<br>Formulae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                           | Write Down Reverse<br>of Cross Over Rule |                                                                  |                                                                               | Follow arrows to get formula                      |                                                                | ıla                                                                                                  |
| За       | C+E<br>Both for 1 mark        | XY <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |                           |                                          | Metal<br>Va                                                      | Valency of X=2<br>Metal X = Magnesium<br>Valency of Y=1<br>Element = Fluorine |                                                   |                                                                |                                                                                                      |
| 3b       | D+E<br>Both for 1 mark        | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               |                           |                                          |                                                                  |                                                                               |                                                   |                                                                |                                                                                                      |
| 4a       | B+D<br>Both for 1 mark        | Answer<br>Name<br>Homologous Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A<br>butai<br>ies alkar                                                                       |                           | B<br>nylpropend<br><b>Ikene</b>          | C<br>cyclobuta<br>cycloalka                                      |                                                                               | -ene                                              | E<br>cyclopropan<br>cycloalkane                                |                                                                                                      |
| 4b       | С                             | Answer A B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                           | -ene<br>ene                              | E<br>cyclopropan<br>cycloalkane<br>C <sub>3</sub> H <sub>6</sub> | /                                                                             |                                                   |                                                                |                                                                                                      |
| 5a       | С                             | AnswerABCDElementMagnesiumOxygenMagnesiumNeonno. of protons1281210no. of neutrons13101212Chargeno charge-2+2no chargeSymbol $\frac{25}{12}Mg$ $\frac{18}{8}O^2$ - $\frac{24}{12}Mg^2$ + $\frac{22}{10}Ne$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |                           |                                          |                                                                  | eon<br>O<br>2<br>narge n                                                      | E<br>Oxygen<br>8<br>10<br>o charge<br>8<br>8<br>0 |                                                                |                                                                                                      |
| 5b       | <b>A+C</b><br>Both for 1 mark |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SOTODOS -                                                                                     | Same atom                 | ic num                                   | ber bu                                                           | t different                                                                   | mass                                              | number                                                         | rons                                                                                                 |
| 6        | B, E<br>1 mark each           | <ul> <li>Same number of protons but different number of neutrons</li> <li>A Top number is the mass number which is the number of protons + number of neutrons</li> <li>B No. of neutrons = mass number - atomic number = 14 - 6 = 8</li> <li>C Number of protons = 6 (atomic number). Number of neutrons = mass no - atomic no. = 14 - 6 = 8.</li> <li>Number of protons = 6 (atomic number). Number of neutrons = mass no - atomic no. = 14 - 6 = 8.</li> <li>E Number of protons = 6 (atomic number). Number of neutrons = mass no - atomic no. = 14 - 6 = 8.</li> <li>E Number of protons = 6 (atomic number). Number of neutrons = mass no - atomic no. = 14 - 6 = 8.</li> <li>E Number of protons = no. of electrons</li> <li>E Number of electrons = number of protons = 6. Number of neutrons = mass no - atomic no. = 14 - 6 = 8.</li> </ul> |                                                                                               |                           |                                          |                                                                  |                                                                               |                                                   |                                                                |                                                                                                      |
| 7a       | F                             | Solution of copper ore by heating with carbon: $2CuO + C \rightarrow 2Cu + CO_2$<br>Solution Reaction: $C_4H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O$<br>Solution Reaction: $CaCO_3 + 2HCI \rightarrow CaCl_2 + H_2O + CO_2$<br>Solution: $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$<br>Solution Reaction: $2Li + 2H_2O \rightarrow 2LiOH + H_2$<br>Solution of copper ore by heating with carbon: $2CuO + C \rightarrow 2Cu + CO_2$<br>Solution: Displacement reactions only proceed if metal is higher up than ion                                                                                                                                                                                                                                                                                                                           |                                                                                               |                           |                                          |                                                                  |                                                                               |                                                   |                                                                |                                                                                                      |



| 7b | <b>A</b> , <b>B</b><br>1 mark each | <ul> <li>☑A Hydrocarbons burn in oxygen to for carbon dioxide and water</li> <li>☑B metal carbonates react with dilute acids to form salt + water + carbon dioxide</li> <li>☑C MAZIT metals react with dilute acids to form salt + hydrogen gas</li> <li>☑D Reactive metals in Group 1 react with cold water: Group 1 metal + water → salt + hydrogen</li> <li>☑E Carbon removes oxygen from copper to form carbon dioxide: 2CuO + C → CO<sub>2</sub> + 2Cu</li> <li>☑F Displacement reaction: Cu not high enough in Reactivity Series to displace Zn from its ion</li> </ul> |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8a | A+D<br>Both for 1 mark             | <ul> <li>A Combustion of hydrogen</li> <li>B Displacement Reaction</li> <li>C Oxidation of Fe<sup>2+</sup> ions</li> <li>D Combustion of methane</li> <li>E reduction reaction involved in corrosion where oxygen and water accept electrons</li> <li>F Reductions of Fe<sup>2+</sup> ions</li> </ul>                                                                                                                                                                                                                                                                         |
| 8b | C, E<br>1 mark each                | $\square$ C - iron metal oxidises to Fe <sup>2+</sup> ions then Fe <sup>2+</sup> ions further oxidise to become Fe <sup>3+</sup> ions: Fe <sup>2+</sup> $\rightarrow$ Fe <sup>3+</sup> + e <sup>-</sup><br>$\square$ E - water and oxygen are required to accept electrons during rusting: 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup> $\rightarrow$ 4OH <sup>-</sup>                                                                                                                                                                                                |
| 9  | C, F<br>1 mark each                | <ul> <li>A Fluorine has an electron arrangement of 2,7 and becomes stable by gaining an electron</li> <li>B Fluorine is a non-metal and tends to gain electrons to get a stable electron arrangement</li> <li>C Fluorine has an electron arrangement of 2,7. On gaining 1 electron it becomes stable 2,8</li> <li>Fluorine atoms have 9 electrons and oxygen atoms have 8 electrons.</li> <li>Fluorine atoms have 9 electrons and chlorine atoms have 17 electrons.</li> <li>F Iodine and fluorine are both in group 7 (Halogens) and both have 7 outer electrons.</li> </ul> |



| Question | Answer                                                                      | Chemistry Covered                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 10a      | cracking                                                                    | Cracking turns less useful long chain saturated hydrocarbons into shorter hydrocarbons, the unsaturated ones being useful for making plastics                                                                                                                   |  |  |  |  |  |  |
| 10b(i)   | $ \begin{bmatrix} H & H \\ - & - \\ C & - \\ - & - \\ C & H \end{bmatrix} $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                         |  |  |  |  |  |  |
| 10b(ii)  | hydrogen chloride<br>or carbon monoxide                                     | PVC releases poisonous hydrogen chloride gas when burnt<br>plastics release poisonous carbon monoxide when burnt                                                                                                                                                |  |  |  |  |  |  |
| 11a(i)   | hydrolysis                                                                  | Hydrolysis: starch + water> glucose                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 11a(ii)  | fructose or maltose                                                         | CarbohydratefructoseglucosemaltosesucrosestarchFormulaC6H12O6C6H12O6C12H22O11C12H22O11(C6H10O5)nReaction withturnsturnsturnsnonoBenedict's Solutionbrick redbrick redbrick redchangechangeTypemonosaccharidemonosaccharidedisaccharidepolysaccharide            |  |  |  |  |  |  |
| 11a(iii) | enzymes denature at<br>high temperatures                                    | At high temperature (well above 37°C), enzymes change shape and denature. This stops the enzyme from breaking down the starch into glucose and this is why there is no colour change with Benedict's solution                                                   |  |  |  |  |  |  |
| 11b      | C <sub>6</sub> H <sub>12</sub> O <sub>6</sub>                               | CarbohydratefructoseglucosemaltosesucrosestarchFormulaC6H12O6C6H12O6C12H22O11C12H22O11(C6H10O5)nTypemonosaccharidemonosaccharidedisaccharidedisaccharidepolysaccharide                                                                                          |  |  |  |  |  |  |
| 12a(i)   | TiCl₄ + 2H₂O<br>↓<br>TiO₂ + 4HCl                                            | $TiCl_4 + 2H_2O \longrightarrow TiO_2 + 4HCl$                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 12a(ii)  | covalent bonding                                                            | Covalent compounds have lower melting/boiling points and can be liquids<br>and gases at room temperature.<br>Ionic compounds have higher melting points are all solid at room temp.                                                                             |  |  |  |  |  |  |
| 12b      | 60%                                                                         | gfm TiO <sub>2</sub> = (1×48) + (2×16) = 48 + 32 = 80g<br>%Ti = $\frac{\text{mass of Ti}}{\text{gfm}}$ × 100 = $\frac{48}{80}$ × 100 = 60%                                                                                                                      |  |  |  |  |  |  |
| 13a      | Cu + 2Ag⁺→ Cu²+ 2Ag                                                         | $Cu + 2Ag^+ + 2NO_3^- \rightarrow Cu^{2+} + 2Ag + 2NO_3^-$ Cancel out any spectator ions which appear on both sides $Cu + 2Ag^+ + 2NO_3^- \rightarrow Cu^{2+} + 2Ag + 2NO_3^-$ Re-write equation omitting spectator ions $Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$ |  |  |  |  |  |  |
| 13b      | Cu → Cu²+ + 2e⁻                                                             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                          |  |  |  |  |  |  |
| 13c(i)   | copper silver<br>silver nitrate<br>solution                                 | In cells, a metal electrode is placed in a solution of its own ions e.g.<br>silver in silver nitrate solution                                                                                                                                                   |  |  |  |  |  |  |



| 13c(ii) | precipitate produced in                                                              | will react with silver nitrate to form silver carbonate precipitate. Precipitate may stop ion bridge from                                                                                                                                                                                                                    |
|---------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14a     | ion bridge                                                                           | completing the circuit.                                                                                                                                                                                                                                                                                                      |
|         | Syringe                                                                              | Gas Syringe     Collection Over Water<br>(some CO2 will dissolve in water)                                                                                                                                                                                                                                                   |
| 14b     | Line graph                                                                           | $             \frac{1}{2}             mark - both labels with units                          \frac{1}{2}             mark - both scales                          \frac{1}{2}             mark - points plotted correctly                          \frac{1}{2}             mark - points joined   $                           |
| 14c     | ~22cm <sup>3</sup> (from graph)                                                      | Estimate the value from the graph at 20 seconds                                                                                                                                                                                                                                                                              |
|         |                                                                                      | Write down Valency below<br>each ion's symbol         Put in<br>Cross-over Arrows         Follow arrows and cancel down<br>to get formula                                                                                                                                                                                    |
| 14d     | (Na⁺) <sub>2</sub> CO <sub>3</sub> <sup>2-</sup>                                     | Na $CO_3^{2-}$ Na $CO_3^{2-}$ Na $CO_3^{2-}$ Na <sub>2</sub> $CO_3$<br>Work out charges on ions. If more than one of ion put ion in brackets and number outside                                                                                                                                                              |
|         |                                                                                      | $1$ 2 1 2 $(Na^+)_2 CO_3^{2-}$                                                                                                                                                                                                                                                                                               |
| 15a     | MetalExtraction Methodmercuryheat aloneleadheat + carbonmagnesiummolten electrolysis | MethodReactivityMetals Made this Methodheat aloneleast reactiveHgAgAuPtheat + carbonMedium reactiveZnFeSnPbCumolten electrolysisMost ReactiveKNaLiCaMgAl                                                                                                                                                                     |
| 15b(i)  | Blast furnace                                                                        | Iron is made in a blast furnace                                                                                                                                                                                                                                                                                              |
| 15b(ii) | 1120 tonnes                                                                          | $1 \text{mol } Fe_2O_3 = (2\times56) + (3\times16) = 112 + 48 = 160g$ $\text{no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{1600g}{160g \text{ mol}^{-1}} = 10 \text{mol}$ $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$ $1 \text{mol} \qquad 2 \text{mol}$ $10 \text{mol} \qquad 20 \text{mol}$ $1 \text{mol} Fe = 56g$ |
|         |                                                                                      | mass = no. of mol × gfm = 20mol × 56g mol <sup>-1</sup> = 1120g<br>160g Fe <sub>2</sub> O <sub>3</sub> produces 1120g of Fe<br>∴ 160tonnes Fe <sub>2</sub> O <sub>3</sub> produces 1120tonnes of Fe                                                                                                                          |
| 16a     | carbon dioxide                                                                       | glucose $\xrightarrow{\text{yeast enzymes}}$ ethanol + carbon dioxide<br>$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$                                                                                                                                                                                                    |
| 16b     | alcohol kills the yeast                                                              | At ~15% alcohol, the yeast is poisoned by the alcohol. Drinks made by fermentation alone have a maximum alcohol concentration of ~16%. Drinks with an alcohol concentration greater than this have to be made using distillation.                                                                                            |
| 16c(i)  | Addition<br>Or<br>Hydration                                                          | Addition: molecule adds across the C=C double bond<br>+ $H_2O$ H OH<br>H-C = C-H $\longrightarrow$ H-C-C-H<br>H H H H H<br>ethene ethanol                                                                                                                                                                                    |
|         |                                                                                      | Hydration: $H_2O$ molecule adds across the C=C double bond                                                                                                                                                                                                                                                                   |



| 16c(ii) | One from:                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                |                                     |                                                                                                           |                                           |                                           |  |  |
|---------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|
| 17a(i)  | CnH2nO                                       | Type<br>Structure                                                                                                                                    | Aldehyde<br>H - c - c = c = H       | Aldehyde<br>H H O<br>H $- \stackrel{C}{c} - \stackrel{C}{c} - \stackrel{O}{c} \stackrel{V}{\leftarrow}$ H | Кеtone<br>H O H<br>H-C-C-C-H<br>H H       | Кеtone<br>H H O H<br>H-c-c-c-с-н<br>H H H |  |  |
|         |                                              | Formula<br>Relationship<br>General Formula                                                                                                           | C2H4O<br>If n=2 then 2n=4<br>CnH2nO | C3H6O<br>If n=3 then 2n=6<br>CnH2nO                                                                       | C3H6O<br>If n=3 then 2n=6<br>CnH2nO       | C4H8O<br>If n=4 then 2n=8<br>CnH2nO       |  |  |
| 17a(ii) | Answer to include:                           | Alcohol with a or Alcohol with -                                                                                                                     |                                     | form aldehyde<br>niddle of chain                                                                          |                                           |                                           |  |  |
| 17b     | aluminium is too<br>reactive                 | Aluminium is muc<br>copper                                                                                                                           | ch higher up E                      | lectrochemical                                                                                            | /Reactivity se                            | ries than                                 |  |  |
| 18a     | readily available                            | Cost of raw materials to make the product is a key factor in efficient production                                                                    |                                     |                                                                                                           |                                           |                                           |  |  |
| 18b     | hydrogen                                     | Water and north sea gas(methane) both contain hydrogen. Air contains no hydrogen but contains nitrogen, the other reactant to make ammonia           |                                     |                                                                                                           |                                           |                                           |  |  |
| 18c     | ammonium phosphate                           | Ammonia forms ammonium hydroxide in water and is neutralised by phosphoric acid:<br>ammonium + phosphoric + acid + water<br>hydroxide + acid + water |                                     |                                                                                                           |                                           |                                           |  |  |
| 18d(i)  | The higher the temp<br>the lower the % yield | Pick same pressure for each line and read % Yield on y-axis<br>e.g. at 100 atmospheres pressure:<br>Temperature 200°C 300°C 400°C 500°C              |                                     |                                                                                                           |                                           |                                           |  |  |
| 18d(ii) | Ammonia breaks down                          | Yield at 100 atm pressure81%53%26%10% $N_2 + 3H_2 \longrightarrow 2NH_3$ reaction never reaches 100% NH3 as                                          |                                     |                                                                                                           |                                           |                                           |  |  |
|         | before reaching 100% NH3                     | the NH3 brea<br>Ignore 1 <sup>st</sup> titre (                                                                                                       |                                     |                                                                                                           |                                           | ne.                                       |  |  |
| 19a(i)  | 20.1cm <sup>3</sup>                          | average titre = $\frac{20.0 + 20.2}{2} = \frac{40.2}{2} = 20.1 \text{ cm}^3$                                                                         |                                     |                                                                                                           |                                           |                                           |  |  |
| 19a(ii) | 0.00201mol                                   | no. of mol = volume × concentration<br>= 0.0201litres × 0.1 mol/l<br>= 0.00201 mol                                                                   |                                     |                                                                                                           |                                           |                                           |  |  |
| 19b     | 0.0804 mol/l                                 | sodium hydroxid<br><sup>1mol</sup><br>0.00201mol<br>concentro                                                                                        | 1m<br>0.002<br><b>n</b> o of        | ol<br>:01mol<br><sup>:</sup> mol <u>0.002</u>                                                             | um ethanoate<br>201mol<br>5litres = 0.080 |                                           |  |  |

